Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145.124
Filtrar
1.
Parasitol Res ; 123(4): 182, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622257

RESUMO

Avian haemosporidians are vector-borne parasites, infecting a great variety of birds. The order Passeriformes has the highest average infection probability; nevertheless, some common species of Passeriformes have been rather poorly studied. We investigated haemosporidians in one such species, the Eurasian jay Garrulus glandarius (Corvidae), from a forest population in Hesse, Central Germany. All individuals were infected with at least one haemosporidian genus (overall prevalence: 100%). The most common infection pattern was a mixed Haemoproteus and Leucocytozoon infection, whereas no Plasmodium infection was detected. Results on lineage diversity indicate a rather pronounced host-specificity of Haemoproteus and Leucocytozoon lineages infecting birds of the family Corvidae.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Passeriformes , Infecções Protozoárias em Animais , Aves Canoras , Humanos , Animais , Prevalência , DNA de Protozoário , Filogenia , Haemosporida/genética , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
2.
J Parasitol ; 110(2): 159-169, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629270

RESUMO

Dicyemids (phylum Dicyemida) are the most common and most characteristic endosymbionts in the renal sacs of benthic cephalopod molluscs: octopuses and cuttlefishes. Typically, 2 or 3 dicyemid species are found in a single specimen of the host, and most dicyemids have high host specificity. Host-specific parasites are restricted to a limited range of host species by ecological barriers that impede dispersal and successful establishment; therefore, phylogenies of interacting groups are often congruent due to repeated co-speciation. Most frequently, however, host and parasite phylogenies are not congruent, which can be explained by processes such as host switching and other macro-evolutionary events. Here, the history of dicyemids and their host cephalopod associations were studied by comparing their phylogenies. Dicyemid species were collected from 8 decapodiform species and 12 octopodiform species in Japanese waters. Using whole mitochondrial cytochrome c oxidase subunit 1 (COI) sequences, a phylogeny of 37 dicyemid species, including 4 genera representing the family Dicyemidae, was reconstructed. Phylogenetic trees derived from analyses of COI genes consistently suggested that dicyemid species should be separated into 3 major clades and that the most common genera, Dicyema and Dicyemennea, are not monophyletic. Thus, morphological classification does not reflect the phylogenetic relationships of these 2 genera. Divergence (speciation) of dicyemid species seems to have occurred within a single host species. Possible host-switching events may have occurred between the Octopodiformes and Decapodiformes or within the Octopodiformes or the Decapodiformes. Therefore, the mechanism of dicyemid speciation may be a mixture of host switching and intra-host speciation. This is the first study in which the process of dicyemid diversification involving cephalopod hosts has been evaluated with a large number of dicyemid species and genera.


Assuntos
Octopodiformes , Parasitos , Animais , Filogenia , Invertebrados/anatomia & histologia , Invertebrados/genética , Decapodiformes/parasitologia
3.
Traffic ; 25(4): e12935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629580

RESUMO

The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.


Assuntos
Doença de Chagas , Vesículas Extracelulares , Leishmania , Parasitos , Trypanosoma cruzi , Animais , Humanos , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia
4.
Parasit Vectors ; 17(1): 187, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605410

RESUMO

BACKGROUND: In the context of climate change, a growing concern is that vector-pathogen or host-parasite interactions may be correlated with climatic factors, especially increasing temperatures. In the present study, we used a mosquito-microsporidian model to determine the impact of environmental factors such as temperature, humidity, wind and rainfall on the occurrence rates of opportunistic obligate microparasites (Microsporidia) in hosts from a family that includes important disease vectors (Culicidae). METHODS: In our study, 3000 adult mosquitoes collected from the field over 3 years were analysed. Mosquitoes and microsporidia were identified using PCR and sequencing of the hypervariable V5 region of the small subunit ribosomal RNA gene and a shortened fragment of the cytochrome c oxidase subunit I gene, respectively. RESULTS: DNA metabarcoding was used to identify nine mosquito species, all of which were hosts of 12 microsporidian species. The prevalence of microsporidian DNA across all mosquito samples was 34.6%. Microsporidian prevalence in mosquitoes was more frequent during warm months (> 19 °C; humidity < 65%), as was the co-occurrence of two or three microsporidian species in a single host individual. During warm months, microsporidian occurrence was noted 1.6-fold more often than during the cold periods. Among the microsporidians found in the mosquitoes, five (representing the genera Enterocytospora, Vairimorpha and Microsporidium) were positively correlated with an increase in temperature, whereas one (Hazardia sp.) was significantly correlated with a decrease in temperature. Threefold more microsporidian co-occurrences were recorded in the warm months than in the cold months. CONCLUSIONS: These results suggest that the susceptibility of mosquitoes to parasite occurrence is primarily determined by environmental conditions, such as, for example, temperatures > 19 °C and humidity not exceeding 62%. Collectively, our data provide a better understanding of the effects of the environment on microsporidian-mosquito interactions.


Assuntos
Culicidae , Microsporídios , Animais , Culicidae/parasitologia , Temperatura , Umidade , Mosquitos Vetores , Microsporídios/genética , DNA
5.
Front Immunol ; 15: 1358361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605966

RESUMO

Alveolar echinococcosis (AE) is a zoonotic parasitic disease caused by the infection of Echinococcus multilocularis (E. multilocularis) larvae. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) produces inhibitory signals and induces T cell exhaustion, thereby inhibiting the parasiticidal efficacy of the liver immune system. Therefore, the purpose of this study is to explore how T-cell exhaustion contributes to AE and whether blocking CTLA-4 could reverse T cell exhaustion. Here we discovered that the expression of CTLA-4 was increased in the infiltrating margin around the lesion of the liver from AE patients by using western blot and immunohistochemistry assay. Multiple fluorescence immunohistochemistry identified that CTLA-4 and CD4/CD8 molecules were co-localized. For in vitro experiments, it was found that the sustained stimulation of E. multilocularis antigen could induce T cell exhaustion, blocking CTLA-4-reversed T cell exhaustion. For in vivo experiments, the expression of CTLA-4 was increased in the liver of E. multilocularis-infected mice, and the CTLA-4 and CD4/CD8 molecules were co-localized. Flow cytometry analysis demonstrated that the percentages of both CD4+ T cells and CD8+ T cells in the liver and peripheral blood were significantly increased and induced T exhaustion. When the mice were treated with anti-CTLA-4 antibodies, the number and weight of the lesions decreased significantly. Meanwhile, the flow cytometry results suggested that blocking CTLA-4 could effectively reverse T cell exhaustion and reactivate immune function. Our work reveals that blocking CTLA-4 could effectively reverse the T cell exhaustion caused by E. multilocularis and could be used as a novel target for the treatment of AE.


Assuntos
Equinococose Hepática , Equinococose , Echinococcus multilocularis , Humanos , Camundongos , Animais , Equinococose Hepática/parasitologia , Antígeno CTLA-4 , Exaustão das Células T , Linfócitos T CD8-Positivos
6.
ACS Infect Dis ; 10(4): 1286-1297, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38556981

RESUMO

Malaria is caused by parasites of the Plasmodium genus and remains one of the most pressing human health problems. The spread of parasites resistant to or partially resistant to single or multiple drugs, including frontline antimalarial artemisinin and its derivatives, poses a serious threat to current and future malaria control efforts. In vitro drug assays are important for identifying new antimalarial compounds and monitoring drug resistance. Due to its robustness and ease of use, the [3H]-hypoxanthine incorporation assay is still considered a gold standard and is widely applied, despite limited sensitivity and the dependence on radioactive material. Here, we present a first-of-its-kind chemiluminescence-based antimalarial drug screening assay. The effect of compounds on P. falciparum is monitored by using a dioxetane-based substrate (AquaSpark ß-D-galactoside) that emits high-intensity luminescence upon removal of a protective group (ß-D-galactoside) by a transgenic ß-galactosidase reporter enzyme. This biosensor enables highly sensitive, robust, and cost-effective detection of asexual, intraerythrocytic P. falciparum parasites without the need for parasite enrichment, washing, or purification steps. We are convinced that the ultralow detection limit of less than 100 parasites of the presented biosensor system will become instrumental in malaria research, including but not limited to drug screening.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum , Malária/tratamento farmacológico , Malária Falciparum/parasitologia , Antagonistas do Ácido Fólico/farmacologia , Galactosídeos/farmacologia , Galactosídeos/uso terapêutico
7.
Acta Vet Scand ; 66(1): 15, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566122

RESUMO

BACKGROUND: Exotic and ornamental fish are highly popular companion animals resulting in a significant transcontinental trade of fish, invertebrates and aquatic plants. A major issue is the diseases associated with these organisms, as they have a major impact on health of the fish in both public and private household aquaria. A secondary issue is the trade with these products, which potentially may expand the distribution area and spread a range of diseases to new habitats. RESULTS: We here describe how Poecilia reticulata (guppy), produced in a private household aquarium, were invaded by cercariae of an exotic trematode released by imported Melanoides tuberculata snails. The fish presented with severe clinical signs (tremor, flashing, scraping of body against objects). A standard parasitological examination and morphometric identification showed scale pocket infections with a digenean trematode species within the genus Transversotrema. Molecular identification by PCR, sequencing and phylogenetic analyses of a 2646 bp sequence encoding ribosomal RNA (partial 18 S, ITS1, 5.8 S, ITS2, partial 28 S) was performed. The 1107 bp sequence of mitochondrial DNA (cox1) showed that the parasite differed from previously described Transversotrema species in M. tuberculata. Morphometrics of adult and larval specimens of this isolate also differed from previously described freshwater species within the genus. The new species was described and is named after Copenhagen, for its geographic origin. CONCLUSIONS: The genus Transversotrema comprises a range of species, adapted to a microhabitat in scalepockets of teleosts. A combination of morphological and molecular characterization techniques has been shown to provide a good differentiation between species. The fish were not purchased from a pet shop but produced in the home aquarium. This indicated that an infection pressure existed in the aquarium, where the source of infection was found to be exotic intermediate host snails M. tuberculata, which originally were imported and purchased from a pet shop. The potential spread of fish diseases associated with trade of fish and snails to new geographic regions, where climate conditions are favourable, is discussed.


Assuntos
Poecilia , Trematódeos , Infecções por Trematódeos , Animais , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/parasitologia , Filogenia , Caramujos/parasitologia , Cercárias , Dinamarca
8.
Parasitol Res ; 123(4): 175, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570360

RESUMO

Eimeria media is a principal pathogen responsible for rabbit coccidiosis, targeting the rabbit's intestinal epithelial cells. This parasitism damages the intestinal mucosal barrier, initiating a systemic immune and inflammatory response that jeopardizes the sustainable growth of rabbit farming. To understand the implications of infection on the host's immune and metabolic responses, we employed RNA-Seq to analyze RNA from the liver and duodenum tissues of post-infected rabbits infected with both the precocious line and wild-type strain of E.media. Comprehensive transcriptomic analysis revealed that the two parasites exhibit divergent transcriptomic imprints on host tissues. While the precocious line predominantly modulates immune-centric pathways with significant differential gene enrichment, wild-type strain favors pathways that affect metabolism. In addition, our study pinpointed a set of genes that undergo significant modifications in response to these effects. These revelations grant a fresh avenue to probe deeper into the symbiotic intricacies of the E.media and its rabbit host.


Assuntos
Coccidiose , Eimeria , Animais , Coelhos , Oocistos , Coccidiose/parasitologia , Duodeno , Fígado , Perfilação da Expressão Gênica
9.
Front Cell Infect Microbiol ; 14: 1304839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572319

RESUMO

Background: Chemotherapies for malaria and babesiosis frequently succumb to the emergence of pathogen-related drug-resistance. Host-targeted therapies are thought to be less susceptible to resistance but are seldom considered for treatment of these diseases. Methods: Our overall objective was to systematically assess small molecules for host cell-targeting activity to restrict proliferation of intracellular parasites. We carried out a literature survey to identify small molecules annotated for host factors implicated in Plasmodium falciparum infection. Alongside P. falciparum, we implemented in vitro parasite susceptibility assays also in the zoonotic parasite Plasmodium knowlesi and the veterinary parasite Babesia divergens. We additionally carried out assays to test directly for action on RBCs apart from the parasites. To distinguish specific host-targeting antiparasitic activity from erythrotoxicity, we measured phosphatidylserine exposure and hemolysis stimulated by small molecules in uninfected RBCs. Results: We identified diverse RBC target-annotated inhibitors with Plasmodium-specific, Babesia-specific, and broad-spectrum antiparasitic activity. The anticancer MEK-targeting drug trametinib is shown here to act with submicromolar activity to block proliferation of Plasmodium spp. in RBCs. Some inhibitors exhibit antimalarial activity with transient exposure to RBCs prior to infection with parasites, providing evidence for host-targeting activity distinct from direct inhibition of the parasite. Conclusions: We report here characterization of small molecules for antiproliferative and host cell-targeting activity for malaria and babesiosis parasites. This resource is relevant for assessment of physiological RBC-parasite interactions and may inform drug development and repurposing efforts.


Assuntos
Antimaláricos , Babesia , Babesiose , Malária Falciparum , Malária , Parasitos , Plasmodium , Animais , Humanos , Babesiose/tratamento farmacológico , Malária/parasitologia , Eritrócitos/parasitologia , Antimaláricos/farmacologia , Plasmodium falciparum
10.
Folia Parasitol (Praha) ; 712024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38567394

RESUMO

The present paper comprises a systematic survey of trematodes found in 13 species of freshwater fishes in Venezuela collected in 1992, 1996 and 2001. The following 15 trematode species were recorded: Adults: Genarchella venezuelaensis sp. n., Thometrema dissimilis sp. n., Megacoelium spinicavum Thatcher et Varella, 1981, Doradamphistoma bacuense Thatcher, 1999, Crassicutis cichlasomae Manter, 1936, Parspina carapo Ostrowski de Núñez, Arredonto et Gil de Pertierra, 2011, Phyllodistomoides hoplerythrini sp. n. Larvae (metacercariae): Clinostomatopsis sorbens (Braun, 1899), Clinostomum marginatum (Rudolphi, 1819), C. detruncatum Braun, 1899, Ithyoclinostomum dimorphum (Diesing, 1850), Odhneriotrema microcephala (Travassos, 1922), Tylodelphys sp., Posthodiplostomum sp., Sphincterodiplostomum sp. All these parasites are reported from Venezuela for the first time and many of these findings represent new host records. The new species G. venezuelaensis sp. n., T. dissimilis sp. n. and P. hoplerythrini sp. n. were collected from the accessory respiratory organ of Loricariichthys brunneus (Hancock) (Loricariidae), from the stomach of Hoplerythrinus unitaeniatus (Spix et Agassiz) (Erythrinidae) and from the intestine of H. unitaeniatus, respectively. All parasites are briefly described and illustrated and problems concerning their morphology, taxonomy, hosts and geographical distribution are discussed. Megacoelium spinispecum Thatcher et Varella, 1981 is considered a junior synonym of M. spinicavum Thatcher et Varella, 1981, and Crassicutis opisthoseminis Bravo-Hollis et Arroyo, 1962 as a junior synonym of C. cichlasomae Manter, 1936.


Assuntos
Peixes-Gato , Caraciformes , Doenças dos Peixes , Parasitos , Trematódeos , Infecções por Trematódeos , Animais , Venezuela/epidemiologia , Peixes/parasitologia , Água Doce , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/parasitologia
11.
S Afr J Surg ; 62(1): 83-85, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38568132

RESUMO

SUMMARY: Isolated incidences of human cysticercosis have been reported world-wide, but it remains a major public health concern in endemic areas such as Mexico, Africa, South-East Asia, Eastern Europe, and South America. Cysticercosis most commonly involves the skeletal muscle, subcutaneous tissue, brain, and eyes. The breast is an uncommon site of presentation for cysticercosis. Due to its rare occurrence, breast cysticercosis is often initially mistaken for other common breast lesions such as cysts, abscess, malignant tumours and fibroadenomas. We report a case of breast cysticercosis in a young South African woman.


Assuntos
Mama , Cisticercose , Fibroadenoma , Feminino , Humanos , África , Mama/diagnóstico por imagem , Mama/parasitologia , Cisticercose/diagnóstico por imagem
12.
PeerJ ; 12: e17161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560466

RESUMO

The life history of a parasite describes its partitioning of assimilated resources into growth, reproduction, and transmission effort, and its precise timing of developmental events. The life cycle, in contrast, charts the sequence of morphological stages from feeding to the transmission forms. Phenotypic plasticity in life history traits can reveal how parasites confront variable environments within hosts. Within the protist phylum Apicomplexa major clades include the malaria parasites, coccidians, and most diverse, the gregarines (with likely millions of species). Studies on life history variation of gregarines are rare. Therefore, life history traits were examined for the gregarine Monocystis perplexa in its host, the invasive earthworm Amynthas agrestis at three sites in northern Vermont, United States of America. An important value of this system is the short life-span of the hosts, with only seven months from hatching to mass mortality; we were thus able to examine life history variation during the entire life cycle of both host and parasite. Earthworms were collected (N = 968 over 33 sample periods during one host season), then parasites of all life stages were counted, and sexual and transmission stages measured, for each earthworm. All traits varied substantially among individual earthworm hosts and across the sites. Across sites, timing of first appearance of infected earthworms, date when transmission stage (oocysts packed within gametocysts) appeared, date when number of both feeding (trophic) cells and gametocysts were at maximum, and date when 100% of earthworms were infected differed from 2-8 weeks, surprising variation for a short season available for parasite development. The maximal size of mating cells varied among hosts and across sites and this is reflected in the number of oocysts produced by the gametocyst. A negative trade-off was observed for the number of oocysts and their size. Several patterns were striking: (1) Prevalence reached 100% at all sites by mid season, only one to three weeks after parasites first appeared in the earthworms. (2) The number of parasites per host was large, reaching 300 × 103 cells in some hosts, and such high numbers were present even when parasites first appeared in the host. (3) At one site, few infected earthworms produced any oocysts. (4) The transmission rate to reach such high density of parasites in hosts needed to be very high for a microbe, from >0.33% to >34.3% across the three sites. Monocystis was one of the first protist parasites to have its life cycle described (early 19th century), but these results suggest the long-accepted life cycle of Monocystis could be incomplete, such that the parasites may be transmitted vertically (within the earthworm's eggs) as well as horizontally (leading to 100% prevalence) and merogony (asexual replication) could be present, not recognized for Monocystis, leading to high parasitemia even very early in the host's season.


Assuntos
Apicomplexa , Traços de História de Vida , Oligoquetos , Parasitos , Animais , Oligoquetos/parasitologia , Reprodução , Estágios do Ciclo de Vida , Oocistos
13.
BMC Vet Res ; 20(1): 126, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561770

RESUMO

BACKGROUND: Ethno-veterinary practices could be used as a sustainable developmental tool by integrating traditional phytotherapy and husbandry. Phytotherapeutics are available and used worldwide. However, evidence of their antiparasitic efficacy is currently very limited. Parasitic diseases have a considerable effect on pig production, causing economic losses due to high morbidity and mortality. In this respect, especially smallholders and organic producers face severe challenges. Parasites, as disease causing agents, often outcompete other pathogens in such extensive production systems. A total of 720 faecal samples were collected in two farms from three age categories, i.e. weaners, fatteners, and sows. Flotation (Willis and McMaster method), modified Ziehl-Neelsen stained faecal smear, centrifugal sedimentation, modified Blagg technique, and faecal cultures were used to identify parasites and quantify the parasitic load. RESULTS: The examination confirmed the presence of infections with Eimeria spp., Cryptosporidium spp., Balantioides coli (syn. Balantidium coli), Ascaris suum, Oesophagostomum spp., Strongyloides ransomi, and Trichuris suis, distributed based on age category. A dose of 180 mg/kg bw/day of Allium sativum L. and 90 mg/kg bw/day of Artemisia absinthium L. powders, administered for 10 consecutive days, revealed a strong, taxonomy-based antiprotozoal and anthelmintic activity. CONCLUSIONS: The results highlighted the therapeutic potential of both A. sativum and A. absinthium against gastrointestinal parasites in pigs. Their therapeutic effectiveness may be attributed to the content in polyphenols, tocopherols, flavonoids, sterols, sesquiterpene lactones, and sulfoxide. Further research is required to establish the minimal effective dose of both plants against digestive parasites in pigs.


Assuntos
Anti-Infecciosos , Artemisia absinthium , Criptosporidiose , Cryptosporidium , Alho , Enteropatias Parasitárias , Parasitos , Doenças dos Suínos , Animais , Suínos , Feminino , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Fazendas , Enteropatias Parasitárias/tratamento farmacológico , Enteropatias Parasitárias/veterinária , Enteropatias Parasitárias/parasitologia , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/parasitologia , Fezes/parasitologia , Prevalência
14.
Parasitol Res ; 123(4): 179, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584235

RESUMO

Giardia duodenalis, the protozoan responsible for giardiasis, is a significant contributor to millions of diarrheal diseases worldwide. Despite the availability of treatments for this parasitic infection, therapeutic failures are alarmingly frequent. Thus, there is a clear need to identify new therapeutic targets. Giardia telomeres were previously identified, but our understanding of these structures and the critical role played by Giardia telomerase in maintaining genomic stability and its influence on cellular processes remains limited. In this regard, it is known that all Giardia chromosomes are capped by small telomeres, organized and protected by specific proteins that regulate their functions. To counteract natural telomere shortening and maintain high proliferation, Giardia exhibits constant telomerase activity and employs additional mechanisms, such as the formation of G-quadruplex structures and the involvement of transposable elements linked to telomeric repeats. Thus, this study aims to address the existing knowledge gap by compiling the available information (until 2023) about Giardia telomeres and telomerase, focusing on highlighting the distinctive features within this parasite. Furthermore, the potential feasibility of targeting Giardia telomeres and/or telomerase as an innovative therapeutic strategy is discussed.


Assuntos
Giardia lamblia , Giardíase , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Giardíase/parasitologia , Giardia/genética , Telômero/genética , Giardia lamblia/genética , Giardia lamblia/metabolismo
15.
Zoolog Sci ; 41(2): 192-200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587914

RESUMO

Assessing the impacts of parasites on wild fish populations is a fundamental and challenging aspect of the study of host-parasite relationships. Salmincola, a genus of ectoparasitic copepods, mainly infects salmonid species. This genus, which is notorious in aquaculture, damages host fishes, but its impacts under natural conditions remain largely unknown or are often considered negligible. In this study, we investigated the potential impacts of mouth-attaching Salmincola markewitschi on white-spotted charr (Salvelinus leucomaenis) through intensive field surveys across four seasons using host body condition as an indicator of harmful effects. The prevalence and parasite abundance were highest in winter and gradually decreased in summer and autumn, which might be due to host breeding and/or wintering aggregations that help parasite transmissions. Despite seasonal differences in prevalence and parasite abundance, consistent negative correlations between parasite abundance and host body condition were observed across all seasons, indicating that the mouth-attaching copepods could reduce the body condition of the host fish. This provides field evidence suggesting that S. markewitschi has a potential negative impact on wild white-spotted charr.


Assuntos
Copépodes , Doenças dos Peixes , Doenças Parasitárias , Animais , Truta , Estações do Ano , Aquicultura , Doenças dos Peixes/parasitologia
16.
Malar J ; 23(1): 97, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589874

RESUMO

BACKGROUND: In sub-Saharan Africa (SSA), Plasmodium falciparum causes most of the malaria cases. Despite its crucial roles in disease severity and drug resistance, comprehensive data on Plasmodium falciparum genetic diversity and multiplicity of infection (MOI) are sparse in SSA. This study summarizes available information on genetic diversity and MOI, focusing on key markers (msp-1, msp-2, glurp, and microsatellites). The systematic review aimed to evaluate their influence on malaria transmission dynamics and offer insights for enhancing malaria control measures in SSA. METHODS: The review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. Two reviewers conducted article screening, assessed the risk of bias (RoB), and performed data abstraction. Meta-analysis was performed using the random-effects model in STATA version 17. RESULTS: The review included 52 articles: 39 cross-sectional studies and 13 Randomized Controlled Trial (RCT)/cohort studies, involving 11,640 genotyped parasite isolates from 23 SSA countries. The overall pooled mean expected heterozygosity was 0.65 (95% CI: 0.51-0.78). Regionally, values varied: East (0.58), Central (0.84), Southern (0.74), and West Africa (0.69). Overall pooled allele frequencies of msp-1 alleles K1, MAD20, and RO33 were 61%, 44%, and 40%, respectively, while msp-2 I/C 3D7 and FC27 alleles were 61% and 55%. Central Africa reported higher frequencies (K1: 74%, MAD20: 51%, RO33: 48%) than East Africa (K1: 46%, MAD20: 42%, RO33: 31%). For msp-2, East Africa had 60% and 55% for I/C 3D7 and FC27 alleles, while West Africa had 62% and 50%, respectively. The pooled allele frequency for glurp was 66%. The overall pooled mean MOI was 2.09 (95% CI: 1.88-2.30), with regional variations: East (2.05), Central (2.37), Southern (2.16), and West Africa (1.96). The overall prevalence of polyclonal Plasmodium falciparum infections was 63% (95% CI: 56-70), with regional prevalences as follows: East (62%), West (61%), Central (65%), and South Africa (71%). CONCLUSION: The study shows substantial regional variation in Plasmodium falciparum parasite genetic diversity and MOI in SSA. These findings suggest a need for malaria control strategies and surveillance efforts considering regional-specific factors underlying Plasmodium falciparum infection.


Assuntos
Malária Falciparum , Proteína 1 de Superfície de Merozoito , Humanos , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum , Antígenos de Protozoários/genética , Proteínas de Protozoários/genética , Marcadores Genéticos , Variação Genética , Malária Falciparum/parasitologia , Genótipo , Alelos , Repetições de Microssatélites , África do Sul
17.
Inquiry ; 61: 469580241242784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590255

RESUMO

Acute childhood diarrhea is one of the leading causes of childhood morbidity and mortality in sub-Saharan African countries. Entamoeba histolytica and Giardia lamblia are the common cause of childhood diarrhea in the region. However, there are only few studies on protozoa causing diarrhea in sub-Saharan African countries. This study was conducted to investigate the relative prevalence and explore risk factors of E. histolytica and G. lamblia among diarrheic children of under 5 years in a public hospital of Ethiopia. A retrospective study was conducted among diarrheic children at Hiwot Fana hospital, Ethiopia. Records of all diarrheic children less than 5 years who had sought medical treatment in the hospital from September 1, 2020 to December 31, 2022 were included. Data were collected from 1257 medical records of the children using a structured data-collection format. Data were entered into an Excel sheet and exported into SPSS version 22 for data processing and analysis. Descriptive statistical tests, Chi-square, and logistic region analysis were applied to determine predictors of protozoa infections. Of the 1257 cases, 962 (76.5%) had watery diarrhea and the remaining 239 (19.0%) had dysentery. The combined prevalence of E. histolytica and G. lamblia among diarrheic children was 11.8% (95% CI: 9.6-13.4). As the age of children increased, the frequency of these two protozoan infections was significantly increased compared to children with other causes. There were more diarrhea cases during the summer season including those associated with E. histolytica and G. lamblia. This study revealed that 1 in 10 causes of diarhhea among young children in the study area was likely caused by E. histolytica and G. lamblia. These findings call for community-based safe water and food safety interventions in order to reduce childhood diarrhea caused by protozoan infections in resource-poor settings.


Assuntos
COVID-19 , Infecções por Protozoários , Criança , Humanos , Pré-Escolar , Prevalência , Etiópia/epidemiologia , Estudos Retrospectivos , Fezes/parasitologia , Diarreia/etiologia , Diarreia/parasitologia , Infecções por Protozoários/complicações , Hospitais Públicos
18.
PLoS One ; 19(4): e0297362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568993

RESUMO

BACKGROUND: Toxoplasma gondii (T. gondii) is a worldwide distributed protozoan parasite which has infected a wide range of warm-blooded animals and humans. The most common form of T. gondii infection is asymptomatic (latent); nevertheless, latent toxoplasmosis can induce various alterations of sex hormones, especially testosterone, in infected humans and animals. On the other hand, testosterone is involved in behavioral traits and reproductive functions in both sexes. Hence, the purpose of this systematic review is to summarize the available evidence regarding the association between T. gondii infection and testosterone alteration. METHODS: In the setting of a systematic review, an electronic search (any date to 10 January 2023) without language restrictions was performed using Science Direct, Web of Science, PubMed, Scopus, and Google Scholar. The PRISMA guidelines were followed. Following the initial search, a total of 12,306 titles and abstracts were screened initially; 12,281 were excluded due to the lack of eligibility criteria or duplication. Finally, 24 articles met the included criteria. A mean±standard deviation (SD) was calculated to assess the difference of testosterone between T. gondii positive and T. gondii negative humans. The possibility of publication bias was assessed using Egger's regression. P-value < 0.05 was considered statistically significant. RESULTS: This systematic review identified 24 articles (18 studies in humans and six studies in animals). Most human studies (13 out of 19) reported an increased level of testosterone following latent toxoplasmosis in males, while three studies reported decreased levels and two studies reported an insignificant change. Eleven articles (seven datasets in males and seven datasets in females) were eligible to be included in the data synthesis. Based on the random-effects model, the pooled mean± SD of testosterone in T. gondii positive than T. gondii negative was increased by 0.73 and 0.55 units in males and females, respectively. The Egger's regression did not detect a statistically significant publication bias in males and females (p = value = 0.95 and 0.71), respectively. Three studies in male animals (rats, mice, and spotted hyenas) and two studies in female animals (mice and spotted hyenas) reported a decline in testosterone in infected compared with non-infected animals. While, one study in female rats reported no significant changes of testosterone in infected than non-infected animals. Moreover, two studies in male rats reported an increased level of testosterone in infected than non-infected animals. CONCLUSIONS: This study provides new insights about the association between T. gondii infection and testosterone alteration and identifies relevant data gaps that can inform and encourage further studies. The consequence of increased testosterone levels following T. gondii infection could partly be associated with increased sexual behavior and sexual transmission of the parasite. On the other hand, declining testosterone levels following T. gondii infection may be associated with male reproductive impairments, which were observed in T. gondii-infected humans and animals. Furthermore, these findings suggest the great need for more epidemiological and experimental investigations in depth to understand the relationship between T. gondii infection and testosterone alteration alongside with future consequences of testosterone alteration.


Assuntos
Hyaenidae , Toxoplasma , Toxoplasmose , Masculino , Humanos , Feminino , Animais , Camundongos , Ratos , Testosterona , Toxoplasmose/parasitologia , Reprodução , Estudos Soroepidemiológicos
19.
PLoS Negl Trop Dis ; 18(4): e0011452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568999

RESUMO

BACKGROUND: Immune response of triatomines plays an important role in the success or failure of transmission of T. cruzi. Studies on parasite-vector interaction have shown the presence of trypanolytic factors and have been observed to be differentially expressed among triatomines, which affects the transmission of some T. cruzi strains or DTUs (Discrete Typing Units). METHODOLOGY/PRINCIPAL FINDINGS: Trypanolytic factors were detected in the hemolymph and saliva of R. prolixus against epimastigotes and trypomastigotes of the Y strain (T. cruzi II). To identify the components of the immune response that could be involved in this lytic activity, a comparative proteomic analysis was carried out, detecting 120 proteins in the hemolymph of R. prolixus and 107 in R. colombiensis. In salivary glands, 1103 proteins were detected in R. prolixus and 853 in R. colombiensis. A higher relative abundance of lysozyme, prolixin, nitrophorins, and serpin as immune response proteins was detected in the hemolymph of R. prolixus. Among the R. prolixus salivary proteins, a higher relative abundance of nitrophorins, lipocalins, and triabins was detected. The higher relative abundance of these immune factors in R. prolixus supports their participation in the lytic activity on Y strain (T. cruzi II), but not on Dm28c (T. cruzi I), which is resistant to lysis by hemolymph and salivary proteins of R. prolixus due to mechanisms of evading oxidative stress caused by immune factors. CONCLUSIONS/SIGNIFICANCE: The lysis resistance observed in the Dm28c strain would be occurring at the DTU I level. T. cruzi I is the DTU with the greatest geographic distribution, from the south of the United States to central Chile and Argentina, a distribution that could be related to resistance to oxidative stress from vectors. Likewise, we can say that lysis against strain Y could occur at the level of DTU II and could be a determinant of the vector inability of these species to transmit T. cruzi II. Future proteomic and transcriptomic studies on vectors and the interactions of the intestinal microbiota with parasites will help to confirm the determinants of successful or failed vector transmission of T. cruzi DTUs in different parts of the Western Hemisphere.


Assuntos
Doença de Chagas , Rhodnius , Trypanosoma cruzi , Animais , Trypanosoma cruzi/genética , Rhodnius/parasitologia , Hemolinfa , Proteômica , Glândulas Salivares , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Fatores Imunológicos/metabolismo
20.
Parasit Vectors ; 17(1): 175, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570784

RESUMO

BACKGROUND: Helminth extracellular vesicles (EVs) are known to have a three-way communication function among parasitic helminths, their host and the host-associated microbiota. They are considered biological containers that may carry virulence factors, being therefore appealing as therapeutic and prophylactic target candidates. This study aims to describe and characterise EVs secreted by Sparicotyle chrysophrii (Polyopisthocotyla: Microcotylidae), a blood-feeding gill parasite of gilthead seabream (Sparus aurata), causing significant economic losses in Mediterranean aquaculture. METHODS: To identify proteins involved in extracellular vesicle biogenesis, genomic datasets from S. chrysophrii were mined in silico using known protein sequences from Clonorchis spp., Echinococcus spp., Fasciola spp., Fasciolopsis spp., Opisthorchis spp., Paragonimus spp. and Schistosoma spp. The location and ultrastructure of EVs were visualised by transmission electron microscopy after fixing adult S. chrysophrii specimens by high-pressure freezing and freeze substitution. EVs were isolated and purified from adult S. chrysophrii (n = 200) using a newly developed ultracentrifugation-size-exclusion chromatography protocol for Polyopisthocotyla, and EVs were characterised via nanoparticle tracking analysis and tandem mass spectrometry. RESULTS: Fifty-nine proteins involved in EV biogenesis were identified in S. chrysophrii, and EVs compatible with ectosomes were observed in the syncytial layer of the haptoral region lining the clamps. The isolated and purified nanoparticles had a mean size of 251.8 nm and yielded 1.71 × 108 particles · mL-1. The protein composition analysis identified proteins related to peptide hydrolases, GTPases, EF-hand domain proteins, aerobic energy metabolism, anticoagulant/lipid-binding, haem detoxification, iron transport, EV biogenesis-related, vesicle-trafficking and other cytoskeletal-related proteins. Several identified proteins, such as leucyl and alanyl aminopeptidases, calpain, ferritin, dynein light chain, 14-3-3, heat shock protein 70, annexin, tubulin, glutathione S-transferase, superoxide dismutase, enolase and fructose-bisphosphate aldolase, have already been proposed as target candidates for therapeutic or prophylactic purposes. CONCLUSIONS: We have unambiguously demonstrated for the first time to our knowledge the secretion of EVs by an ectoparasitic flatworm, inferring their biogenesis machinery at a genomic and transcriptomic level, and by identifying their location and protein composition. The identification of multiple therapeutic targets among EVs' protein repertoire provides opportunities for target-based drug discovery and vaccine development for the first time in Polyopisthocotyla (sensu Monogenea), and in a fish-ectoparasite model.


Assuntos
Vesículas Extracelulares , Platelmintos , Dourada , Trematódeos , Animais , Proteômica , Dourada/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...